
Submitted to the ECA12000 Workshop on Local Scarcl1 i n I'lanning and Scheduling.

An Empirical Evaluation of the Effectiveness
of Local Search for Replanning

Steve Chien, Russell Knight, and Gregg Rabideau

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 9 1 109

(firstname.1astname) @jpl.nasa.gov

Abstract related mission operations effort by 80% and increased
Local search has been proposed as a means of responding
to changes in problem context requiring replanning.
Iterative repair and iterative improvement have. desirable
properties of preference for plan stability (e.g., non-
disruption, minimizing change), and have performed well
in a number of practical applications. However, there has
been little real empirical evidence to support this case.
This paper focuses on the use of local search to support a
continuous planning process (e.g., continuously replanning
to account for problem changes) as is appropriate for
autonomous spacecraft control. We describe results from
ongoing empirical tests using the CASPER system to
evaluate the effectiveness of local search to replanning
using a number of spacecraft scenario simulations
including landed operations on a comet and rover
operations.'

Introduction
In recent years Galileo, Clementine, Mars Pathfinder,
Lunar Prospector, and Cassini have all demonstrated a new
range of robotic missions to explore our solar system.
However, complex missions still require large teams of
highly knowledgeable personnel working around the clock
to generate and validate spacecraft command sequences.
Increasing knowledge of our Earth, our planetary system,
and our universe challenges NASA to fly large numbers of
ambitious missions, while fiscal realities require doing so
with budgets far smaller than in the past. In this climate,
the automation of spacecraft commanding becomes an
endeavor of crucial importance.

Automated planning is a key enabling technology for
autonomous spacecraft. Recent experiences indicate the
promise of planning and scheduling technology for space
operations. Use of the DATA.-CHP.WR arltornted
planning and scheduling system (DCAPS) to command the
DATA-CHASER shuttle payload reduced commanding-

' This work was perfonned by the Jet Propulsion Laboratory, under
contract with the National Aeronautics and Space Administration.

science return by 40% over manually generated sequences
(Chien et al. 1999). This increase was possible because
short turn-around times (approximately 6 hours) imposed
by operations constraints did not allow for lengthy, manual
optimization. And the Remote Agent Experiment (ARC,
JPL et al. 1999) demonstrated the feasibility of flying AI
software (including a planner) to control a spacecraft.

Local iterative algorithms have been successfully
applied to planning and scheduling (Minton et al. 1994,
Zweben et al. 1994, Chien et al. 1999, Chien et al. 20004
for a wide range of space applications. Local iterative
repair has been proposed as a means of providing a fast
replanning capability to enable response to environmental
changes (Smith, 1994 Chien et al. 2000b). This paper
describes an empirical evaluation of the effectiveness of
local search in such a replanning context.

The remainder of this paper is organized as follows.
First, we briefly describe our approach to local iterative
repair. Next we describe how it is applied in a replanning
context. We then describe a Comet Nucleus Sample
Return (CNSR) scenario and simulation and empirical tests
evaluating the effectiveness of local search in finding
solutions. Finally, we describe future work, related work
and conclusions.

Plan Conflicts and Repair
We now describe the overall approach to iterative repair
planning and scheduling in the ASPEN system (Chien et
al. 2000b, Rabideau et al. 1999). The ASPEN planning
and scheduling system is able to represent a wide range of
constraints including:

Finite enumeration state requirements and changers

Depletable (e.g. fuel) and non-depletable (e.g., 20W

0 Task decompositions (e.g., Hierarchical Task
Networks);
Complex functional relationships between activity
parameters (e.g., downlink time is datdrate +
startup); and

(e.g., camera ON, OFF);

[) <; .,,, i r) ? .,source - constraints;

mailto:jpl.nasa.gov

tranSiliOI1). For tach conflict type, negative contributor,
there is a set of repair methods. The
search space consists of all possible
repair methods applied to all possible conflicts in all
possible orders. We describe an efficient approach to
searching this space. During iterative repair, the
conflicts in the schedule are detected and addressed one at
a time until no conflicts exist, or a user-defined time limit
has been exceeded. A conflict is a violation of a parameter
dependency, temporal or resource constraint. Conflicts can
be repaired by means of several predefined methods. The
repair methods are: moving an activity, adding a new
instance of an activity, deleting an activity, detailing an
activity, abstracting an activity, making a reservation of an
activity, canceling a reservation, connecting a temporal
constraint, disconnecting a constraint, and changing a
parameter value. The repair algorithm first selects a
conflict to repair then selects repair method. The type of
conflict being resolved determines which methods can
repair the conflict. Depending on the selected method, the
algorithm may need to make addition decisions. For
example, when moving an activity, the algorithm must
select a new start time for the activity.

Figure 1 shows an example situation for repair. On-
board RAM is represented as a depletable resource. The
shaded region shows a conflict where the RAM buffer has
been oversubscribed. The science activities using the
resource prior to the conflict are considered contributors.
Moving or deleting one of the contributors can repair the
conflict. Another possibility would be to create a new
downlink activity in order to replenish the resource and
repair the conflict.

integrating Planning and Execution
Traditionally, planning and scheduling research has
focused on a batch formulation of the problem. In this
approach, when addressing an ongoing planning problem,
time is divided up into a number of planning horizons,
each of which lasts for I I significant period of time. When
one nears the end of the current horizon, one projects what
the state will be at the end of the execution of the current
plan (see Figure 2). The planner is invoked with: a new

set of goals for the new horizon, the expected initial state
for the new horizon, and the planner generates a plan for
the new horizon. As an exemplar of this approach, the
Remote Agent Experiment operated in this fashion
(Jonsson et a1 2000).

This approach has a number of drawbacks. In this batch
oriented mode, typically planning is considered an off-line
process which requires considerable computational effort
and there is a significant delay from the time the planner is
invoked to the time that the planner produces a new plan.'
If a negative event occurs (e.g., a plan failure), the
response time until a new plan may be significant. During
this period the system being controlled must be operated
appropriately without planner guidance. If a positive event

I Ex&ute" Cycle I
occurs (e.g., a fortuitous opportunity, such as activities
finishing early), again the response time may be

' As a data point, the planner for the Remote Agent
Experiment (RAX) flying on-board the New Millennium
Deep Space One mission (Jonsson et al 2000) takes
approximately 4 hours to produce a 3 day operations plan.
RAX is running on a 25 MHz RAD 6000 flight processor
and uses roughly 25% of the CPU processing power.
While this is a significant improvement over waiting for
ground intervention, making the planning process even
more responsive (e.g., on a time scale of seconds or tens of
seconds) to changes in the operations context, would
increase the overall time for which the spacecraft has a
consistent plan. As long as a consistent plan exists, the
spacecraft can keep busy working on the requested goals
and hence may be able to achieve more science goals.

slgniL‘icant. If the opportunity is short
lived, the system must he able 1 0 take
advantage o f such opportunities without
:I new plan (because of the delay i n
generating a new plan). Finally, because
the planning process may need to he
initiated significantly before the end of
the current planning horizon, it may be
difficult to project what the state will be
when the current plan execution is
complete. If the projection is wrong the
plan may have difficulty.

To achieve a higher level of
responsiveness in a dynamic planning
situation, we utilize a continuous
planning approach and have
implemented a system called CASPER

I r I

A Goals

F

Goals

’igure 3: Continuous Planning Incremental Plan Exte :nsion

(for Continuous Activity Scheduling _Planning Execution
and Replanning). Rather than considering planning a batch
process in which a planner is presented with goals and an
initial state, the planner has a current goal set, a plan, a
current state, and a model of the expected future state. At
any time an incremental update to the goals, current state,
or planning horizon (at much smaller time increments than
batch planning)’ may update the current state of the plan
and thereby invoke the planner process. This update may
be an unexpected event or simply time progressing
forward. The planner is then responsible for maintaining a
consistent, satisficing plan with the most current
information. This current plan and projection is the
planner’s estimation as to what it expects to happen in the
world if things go as expected. However, since things
rarely go exactly as expected, the planner stands ready to
continually modify the plan. From the point of view of the
planner, in each cycle the following occurs:

1. changes to the goals and the initial state first posted
to the plan,

2. effects of these changes are propagated through the
current plan projections (includes conflict
identification)

3. plan repair algorithms’ are invoked to remove
conflicts and make the plan appropriate for the
current state and goals.

This approach is shown in below in Figure 3. At each step,
the plan is created by using incremental replanning from:

the portion of the old plan for the current planning

the change (A) in the goals relevant for the new

the change (A) in the state; and
the new (extended)planning horizon.

horizon;

planning horizon;

* For the spacecraft control domain we are
envisaging an update rate on the order of tens of
seconds real time.

In this paper we do not focus on the state/resource
representation or the repair methods, for details see
(Rabideau et al. 1999).

This incremental fast replanning approach as embodied in
the CASPER system is being used i n a range of
applications (Chien et al. 2000b) including: onboard a
research prototype rover, planned for flight in several
space missions, ghigh level frlight control and weapons
management in an Unmanned Aerial Vehicle prototype,
and Ground Communication Station control.

CNSR Landed Operations Testbed
The CNSR scenario represents landed operations of a

mission to a comet. The lander will use a one-meter long
drill to collect samples and then feed them to a gas
chromatograph/mass spectrometer onhoard the lander. This
instrument will analyze the composition of the nucleus
collected from various depths below the surface. The
lander will also carry cameras to photograph the comet
surface. Additional instruments planned onboard the lander
to determine the chemical makeup of the cometary ices and
dust will include an infraredkpectrometer microscope and
a gamma-ray spectrometer. After several days on the
surface, the lander will bring a sample back to the orbiter
for return to Earth.

In this test scenario the planner has models of 11 state
and resource timelines, including drill location, battery
power, data buffer, and camera state. The model also
includes 19 activities such as uplink data, move drill,
compress data, take picture, and perform oven experiment.

The nominal mission scenario consists of three major
classes of activities: drilling and material transport,
instrument activity including imaging and in-situ materials
experiments, and data uplink. Of these, drilling is the most
complex and unpredictable.

The mission plan calls for three separate drilling
activities. Each drilling activity drills a separate hole and
acquires samples at three different depths during the
process: a surface sample, a 20 cm. deep sample, and a
one-meter deep sample. Acquiring a sample involves five
separate “mining” operations after the hole has been drilled
to the desired depth. Each mining operation removes 1 cm.
of material. Drilling rate and power are unknown a priori,

but thew ;IN* wlsonahlc worst-case estimates available.
lhl l ing C.;III I ; I I I altogclhcr li)r ;I varlety ofrc;~sons.

One 01' tllc tllrcc drilling operations is used to acquire
m;Itcri;ll lY)r s;ItnpIe-return. The other two are used t o
supply Inatcri;1l t o in-situ science experiments onboard thc
lander. Thew experiments involve depositing the samples
in an ovcn. and taking datu while the sample is heated.
Between baking operations the oven must cool, but there
arc two ovens, allowing experiments to be interleaved
unless one o f the ovens fails.

The replanning capability was tested using a stochastic
version of the CNSR simulation described above. This
simulation had a number of random variables, which are
described bclow.

Compression - we model the compression for
science data as a normal random variable with a
mcan of 0.9 and a standard deviation of 0.25*0.9.
This has the effect of forcing the planner to respond
to buffer over-runs (as described above) and buffer
under-runs (to optimize the plan).
Drilling Time - we model the amount of time to
drill in minutes as a random variable with mean of
30 and standard deviation of 3.
Drilling power - we model the actual power
consumption from drilling in watts as a normal
random variable with mean 40 and standard
deviation 4.
Oven Failure - we model oven failure occurrence as
Poisson distributed with each oven having a 50%
chance of failure over the entire mission horizon.
Data Transmission Rate: we model the time to
transmit data in kilobits per second as a normal
random variable with a mean of 100 and a standard
deviation of 10. This is intended to model the
variability in communications to the orbiter.
Oven Warming and Cooling Times: we model the
amount of time to heat up the sample and for the

result i n conflicts t h a t should be handled by thc
pl;lnnor/sclleduler.

I n order gain insight i n t o the effectiveness of the local
search i n replanning, we cxmnine the number of plan
operations and CPU time t o either repair the current plan or
t o construct ;I new plan to reflect the rcal-time execution
fcctlback. Table 0 shows the average number of CPU
seconds and plan modifications required to repair the
existing old plan and construct a new plan from scratch.
This data clearly shows that it is more efficient to re-use
the old plan than to construct a plan from scratch.

We also briefly present results in a rover operations
domain (space constraints preclude a more lengthy
presentation of these results). Table 4 and 5 show the CPU
seconds required to generate a new plan from scratch
versus by modifying the old plan.. Unfortunately we do
not yet have plan operations statistics (only CPU seconds);
we hope to have such statistics by the time of the camera-
ready paper.

Tables 1 shows for the CNSR simulations, a histogram
plot which indicates the frequency with which problems
from feedback required a given number of plan operations
to repair (Le. the height of the column in the Y- dimension
indicates the frequency of problems requiring the number
of repair operations indicated on the X axis. Table 2
shows a similar plot for the CPU Time for the CNSR
scenario. These plots indicate that a large number of
solutions to the replanning problem lie in the neighborhood
of the old plan. This validates our hypothesis that if the
Agoals and Astate are small, that the Aplan should also be
small. Additionally the histograms clearly show that
replanning from the old plan is more efficient than batch
planning from scratch.

Average

Remir Batch Repair Batch

CPU Average Planning
Iterations Seconds

30. 00?'.

25 00%

20.00%

15.00%

10.00%

5.00%

0.00%

I 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
Table 2: CNSR -Tim.. In rcondr

35.00%

30.00%

25.00%

20.00%

15. 00%

10.00%

5 . m

0.00%

I

i &Batch Planning
heraliue Repair

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Table 3: Rover Scenario, Time, In aconds

Table 3 shows the histogram plot for the CPU time
required to repair the old plan vs. constructing a new plan
from scratch. Again the data indicates that not only are a
large number of solutions quite close to the old plan but
that re-using the old plan is significantly more efficient that
replanning from scratch.

Related Work
The question of repairability that this paper addresses is

strongly linked to the notion of supermodels (Ginsberg &
Parkes 1998). In supermodels, they examine the problem
of finding a (m,n) SAT model which after having m bits
flipped, can be made consistent by flipping a different n
bits. They show that for specific classes of problems this
can be reduced to a SAT problem. In contrast, we are
interested in finding a plan that after being perturbed by
real-world feedback (corresponding to the m bits flipped
above) that using a bounded amount of computation (n bits
flipped in response above) can be repaired to be consistent
(be made a consistent SAT model). Because our
perturbation space is much more rich (stochastic elements
for states, resource usage, and activity duration) and our
plan repair space more rich (add, move, delete, abstract
activities) the problems are alike only at the most abstract
level. However, the general approach of trying to generate
robust plans is exactly the problem of interest and the study
in this paper is aimed at evaluating the ability of local
search to repair plans.

_ . 1 he high-spccci local search techniques used i n our
continuous planner prototype arc ;1n cvolul iot l 0 1 those
dcvclopcd l o r the DCAPS system (Chien ct a l . 1999) that
I1xs proven robust in x t u d applications. I n terms of
related work, iterative algorithms have hccn ;lpplicJ to a
widc range of' computer science problems such ;IS traveling
salesman (Lin & Kernighun 1973) as well as Artificial
Intelligence Planning (Biefeld & Cooper 1991, Chien &
DeJong 1994, Zweben et al. 1994, Hammond 1989,
Sussman 1973). Iterative repair algorithms have also been
used for a number of scheduling systems. The GERRY
system (Zweben et al. 1994) uses iterative repair with a
global evaluation function and simulated annealing to
schedule space shuttle ground processing activities. The
Operations Mission Planner (OMP) (Biefeld & Cooper
1991) system used iterative repair in combination with a
historical model of the scheduler actions (called
chronologies) to avoid cycling and getting caught in local
minima. Work by Johnston and Minton (Johnston &
Minton 1994) shows how the min-conflicts heuristic can be
used not only for scheduling but also for a wide range of
constraint satisfaction problems.

The OPIS system (Smith 1994) can also be viewed as
performing iterative repair. However, OPIS is more
informed in the application of its repair methods in that it
applies a set of analysis measures to classify the bottleneck
before selecting a repair method. Excalibur (Narayek,
1998) represents a general framework for using constraints
to unify planning and scheduling constraints, uncertainty,
and knowledge. This framework is consistent with the
CASPER design, however in this paper we have focused
on a lower-level. Specifically, we have focused on re-
using the current plan using iterative repair and specific
locking mechanisms to avoid race conditions.

Work on the PRODIGY system (Cox & Veloso 1998)
has indicated how goals may be altered due to
environmental changedfeedback. These changes would be
modeled in our framework via task abstractionhetraction
and decomposition for potentially failing activities. Other
PRODIGY work (Veloso, Pollack, & Cox 1998) has
focused on determining which elements of the world state
need to be monitored because they affect plan
appropriateness. In our approach we have not encountered
this bottleneck, our fast state projection techniques enable
us to detect relevant changes by noting the introduction of
conflicts into the plan.

Work on CPEF (Continuous Planning and Execution
Framework) (Myers 1998) uses PRS, AP, and SIPE-2, also
represents a similar framework to integrating planning and
execution. CPEF and CASPER differ in a number of
ways. First, CPEF attempts to cull out key aspects of the
world to monitor (as is necessary in general open-world
domains). They also suggest the use of iterative repair
(they use the term conservative repairs). And their
taxonomy of failure types is very similar to ours in terms
of' action failure and re-expansion of task networks (re-

[lccc)rnllosltic)ll). Howe\er. I n this paper we have locusecl
on lower Icwl issucs i n synchronization and timing.

Conclusions
This paper 11as tlcscrihed an empirical evaluation of a

local search approach to integrating planning and
execution for spacecraft control and operations. In this
empirical study we investigated the hypothesis that small
perturbations in execution of a plan would be resolvable in
an efficient fashion by local search. Empirical evidence
from two space mission simulations supports the use of
local search for this type of problem.

Acknowledgements
This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

References
NASA Ames & JPL, Remote Agent Experiment Web

Page, http://ra.u.arc.nasa.pov/, 1999.
E. Biefeld and L. Cooper, “Bottleneck Identification

Using Process Chronologies,” Proceedings of the 1991
International Joint Conference on Artificial Intelligence,
Sydney, Australia, 1991.

S. Chien and G. DeJong, “Constructing Simplified Plans
via Truth Criteria Approximation,” Proceedings of the
Second International Conference on Artificial Intelligence
Planning Systems, Chicago, IL, June 1994, pp. 19-24.

S. Chien, G. Rabideau, J. Willis, and T. Mann,
“Automating Planning and Scheduling of Shuttle Payload
Operations,” Art(ficia1 Intelligence Journal, 1 14 (1999)

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, “Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,” Proc. 5th
International Conference on Artlpcial Intelligence
Planning and Scheduling, Breckenridge, CO, April 2000.

M. Cox & M. Veloso, “Goal Transformation in
Continuous Pannning,” in Proceedings of the AAAI Fall
Symposium on Distributed Continual Planning, 1998.

B. Drabble, J. Dalton, A. Tate, “Repairing Plans on the
Fly,” Working Notes of the First International Workshop
on Planning and Scheduling for Space, Oxnard, CA 1997.

A. Fukunaga, G. Rabideau, S. Chien, D. Yan, “Towards
an Application Framework for Automated Planning and
Scheduling,’’ Proc. 1997 Int.1 Symp. on Art. Int., Robotics
and Automution f i r Space, Tokyo, Japan, July 1997.

M. Ginsberg and A. Parkes, “Supermodels and
Robustness,” Proceedins of AAAI-98.

K. Hammond, “Case-based Planning: Viewing Planning
as a Memory Task,” Academic Press, San Diego, 1989.

239-255.

hl. Johnston and S. Minton. “Analyzing a Heuristic
Strategy l o r Constraint S;ltislnction and Scheduling,’’ in
Itltc~lliglv~t Scheduling. Morgan Kaufman, San Francisco,
1494.

H. Kautz, B. Selman, “Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search,” Proceedings
AAA196.

S. Lin and B. Kernighan, “An Effective Heuristic for the
Traveling Salesman Problem,” Operations Research Vol.
21, 1973.

N. Muscettola, B. Smith, S. Chien, C. Fry , K. Rajan, S .
Mohan, G. Rabideau , D. Yan, “On-board Planning for the
New Millennium Deep Space One Spacecraft,”
Proceedings of the 1997 IEEE Aerospace Conference,
Aspen, CO, February, 1997, v. I , pp. 303-318.

K. Myers, “Towards a Framework for Continuous
Planning and Execution”, in Proceedings of the AAAI Fall
Symposium on Distributed Continual Planning, 1998.

A. Nareyek, “A Planning Model for Agents in Dynamic
and Unicertain Real-Time Environments,” in Integrating
Planning, Scheduling, and Execution in Dynamic and
Uncertain Environments, AIPS98 Workshop, AAAI
Technical Report WS-98092.

B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscettola, P.
Nayak, M. Wagner, and B. Williams, “ An Autonomous
Spacecraft Agent Prototype,” Autonomous Robots, March
1998.

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, “Iterative Repair Planning for Spacecraft
Operations in the ASPEN System,” Int Symp on Artificial
Intelligence Robotics and Aut. in Space (ISAIRAS),
Noordwijk, The Netherlands, June 1999.

R. Simmons, “Combining Associational and Causal
Reasoning to Solve Interpretation and Planning Problems,”
Tech. Rep., MIT Artificial Intelligence Laboratory, 1988.

S. Smith, “OPIS: An Architecture and Methodology for
Reactive Scheduling,’’ in Intelligent Scheduling, Morgan
Kaufman, 1994.

G. Sussman, “A Computational Model of Skill
Acquisition,” Technical Report, MIT Artificial Intelligence
Laboratory, 1973.

M. Veloso, M. Pollack, M. Cox, “Rationale-based
monitoring for planning in dynamic environments,”
Proceedings Artificial Intelligence Planning Systems
Conference, Pittsburgh, PA, 1998.

M. Zweben, B. Daun, E. Davis, and M. Deale,
“Scheduling and Rescheduling with Iterative Repair,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

http://ra.u.arc.nasa.pov

